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In the analysis, the propagation characteristics of the wave are deter-

mined by formulating an eigenvalue problem, where its eigenvalues

arethe propagation constants sqttared andtheeigenvectors represent

directly the expansion coefficients of the propagating fields. The

analysis treats the inhomogeneity as a polarization current exciting

the corresponding homogeneous guiding system.

The method is used to solve the problem of electromagnetic

wave propagation in partially-filled parallel-plate waveguide. The

convergence, dispersion characteristics, and accuracy of the method

are studied and compared to the results of the variational method

[6]. The present method proved to have better accuracy than the

variational method [6].
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methods render the partial differential equation governing the propa-

gation characteristics of dielectric waveguides to linear simultaneous

algebraic equations, which are manageable on a computer. In essence

the matrix equation is an eigenvalue problem. Depending on the

mathematical formulation, the properties of boundary conditions, and

the methods of evaluating the eigenvalues, the eigenvahre problem

can be written in several forms, which will be discussed in detail in

Section II.

In waveguide theory the important eigenvalues corresponding to

dominant guided modes in which one is interested are the largest

propagation constants or the lowest frequencies. To calculate these

particular eigenvalues several methods have been employed, such as

the zero-determinant searching, the inverse power method [1, ch. 10],

the subspace iteration method [2] (a variation of the inverse power

method using simultaneous iteration), and the method involving tridi-

agonalization and Sturm sequence [1, chs. 8 and 9]. For evaluating

the determinant of a matrix or for inverting a matix in using the

inverse power method one needs to use, for example, Gaussian

elimination or LU decomposition. The matrix resulting from applying

the finite-difference or finite-element method to a differential equation

is banded. The bandwidth grows with the dimension of the problem.

For one-, two-, and three-dimensional cases, the value of bandwidth

M are of order unity, 0( Nlf 2), and O (N2f3 ). respectively, where

N is the matrix order. For a band matrix the number of required

operations for matrix inversion is of order O ( M2 N“ ). The number of

required operations for tridiagonalizing a symmetric matrix is of the

same order as that of matrix inversion. Thus for the two-dimensional

mogeneous paratlel-plate waveguide modes,” in 1991 Int. ,Simrdation
Technology Corrf., SirnTec’91, Oct. 21–23, 1991, Orlando, FL, pp.

waveguide problem the required computation will go as N2, when

..-. -. conventional approaches were used.
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An Efficient Numerical Procedure Using the

Shifted Power Method for Analyzing Dielectric

Waveguides Whhout Inverting Matrices
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Abstract— A numerical procedure using the finite-difference scheme

and the shifted power method is used to analyze the propagation charac-
teristics of dielectric waveguides. The unique feature of thk procedure is

that in determining the eigenvalues corresponding to dominant modes no
operation as costly as matrix inversion, such as Gaussian elimination,
LU decomposition, or tridiagonatization, is invoked. So the proposed
procedure is rather efficient in both memory space and computer time.

Numerical results of a circular step-index fiber are presented for compar-

ison. Due to its efficiency, the proposed procedure is capable of analyzing

coupled waveguides.

I. INTRODUCTION

Applying the finite-difference or finite-element method to analyz-

ing the propagation characteristics of dielectric waveguides has been

investigated for a long time and by many people. These numerical
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After analyzing the distribution of eigenvalues of an associated

matrix in Section III, we show that the direct power method can be

used to calculate the eigenvalues and associated eigenfunctions cor-

responding to dominant modes by suitably shifting the eigenvalues.

The unique feature of this procedure is that no matrix inversion or

tridiagonalization is invoked. Thus the proposed procedure is efficient

in both computation speed and memory space and is simple in the

programming work. A major drawback of the proposed procedure is

the slow convergence rate. Some methods to accelerate this rate will

be discussed in Section V. Numerical results for circular step-index

fiber and coupled rectangular waveguides are presented in Section VI.

II. EIGENVALUE PROBLEMS

Consider a transversely inhomogeneous dielectric waveguide in

which a transverse field @ satisfies the scalar wave equation

v;7j(z,f)) -t [I$e(z,y) – /32]7J’(x,y)= 0. (1)

where k: = ti2 ~0 co, e (.L, y) denotes relative permittivity dkibution,

and @ is the propagation constant in the axial direction. Suppose

that dielectric waveguide is cladded by a homogeneous medium with

relative permittivity El and the maximum value of the permittivity

c(.r, y ) is cz. It is of convenience to express the permittivity e(.r, y) as

where the profile P(OJ,y) is zero in the cladding and its maximum

value is unity. Using the normalized propagation constant II and

normalized frequency 17:

(3)

(4)
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~ Conducting walls

Fig. 1. Cross section of an arbitrarily-shaped waveguide, the domain of
calculation. and the rectangular grid for finite-difference scheme.

the wave equation becomes

V:w(.r,v)+ (rrt’-/b)2(Lr>?J)@(J(,Y)Y)
=(rrl”/b)2Bq!(. r,J), (5)

where b denotes the side length of a rectangle enclosing the cross

section of waveguide’s core region. It is known that the value of

normalized propagation constant B ranges from zero to unity and

practical value of normalized frequency 1“ ranges from zero to a

quantity of order unity.

Byause of the finite-difference technique, the partial differential

equation becomes the linear algebraic simultaneous equations:

{rJ’L+I,,+ 4t-1,, + A>,+l+ 4,,-1- ~L}
+ (rrJ’A/b)2PtJ4tJ i=l, j.. .ml

= (7rvA/b)2BrJ&,, j=l,2. ..m2 (6)

where +,3 = IJ(iil, jA), P,l = P(iA, jA), and A is a small

increment in length. The increment A should be much less than

the side length b in order to model the waveguide and the modal

fields accurately. The rectangular grid of finite-difference scheme is

depicted in Fig. 1. Since the modal fields penetrate into the cladding,

the domain of calculation is extended out from the core region. On the

boundary of the domain, a boundary condition of vanishing field is

enforced (rJ;J = O for i = O, ml + 1, or j = O, mz + 1). Physically,

such a boundary condition corresponds to shielding the waveguide

with a (two-dimensional) rectangular cavity of metallic walls. In order

to conform to the finite-difference scheme a rectangular domain of

size (m 1 + l)A by (mz + l)A is used, regardless of the waveguide’s

structure. The extent to which the modal field penetrates into the

cladding depends on several factors, especially the constant 11.

Whether the extension of domain is large enough can be monitored

just by checking whether the calculated fields at the node points

neighboring to the boundary are small enough.

To solve the simultaneous equations three approaches are com-

monly used. The first one is to arrange the simultaneous equations

in the form:

Rx=o, (7)

where z is a vector whose elements are the various field values @,J

and R is a matrix whose elements depend on the eigenvalue 5 (or

u). The eigenvalue problem can be solved by searching a suitable

value of 5 (or ~ ) such that the determinant of matrix R vanishes,

as used in [3]. For evaluating the determinant a process as costly as

matrix inversion must be invoked. This approach needs to calculate

many determinants and is less efficient, but is capable of dealing with

sophisticated boundary conditions.

The second approach is to fix the value of B and arrange the si-

multaneous equations in the form of generalized eigenvalue problem:

S.= AT.. (8)

where matrix S comes from the first term on the left-hand side of (6),

matrix T comes from the other two terms in (6), and the eigenvalue

A = T’2. In this form the important eigenvalues V are the smallest

ones, which can be found using the inverse power method or the

subspace iteration method, as used in [4]. This approach also requires

one to invert or, equivalently, factorize the matrix S.

The third approach is to fix the value of t‘ and arrange the

simultaneous equations in the form of standard eigenvalue problem:

Ax = Ax, (9)

where matrix A comes from the two terms on the left-hand side of (6)

and eigenvalue ~ = (~ \“A /b )z B. Since the important eigenvalues

11 are of the largest ones, it seems that these eigenvalues can be

found quite efficiently by using the ordinary power method and its

variations in which no matrix inversions are involved. However, this

approach does not work. The trouble is that the calculated eigenvalues

do not correspond to guided modes and hence are spurious. Instead.

more expensive methods such as the subspace iteration method [5]

and the methods involving tridiagonalization [6] have been used to

solve standard eigenvalue problems similar to (9).

Thus all the three popular approaches involve a process similar to

matrix inversion with respect to computational cost and hence are

inefficient in both memory space and computer time. The ongin of

the just-mentioned spurious eigenvalues can be given after analyzing

the distribution of the eigenvalues of matrix A, as discussed in the

following section.

III. DISTRIBUTION OF EIGENVALUES

For simplicity in the discussion we first remove the waveguide, that

is, put P(z, y ) = O. Note that matrix A is real and symmetric. Thus

all the eigenvalues A of matrix A are real. An actual calculation using

the power method and its variation yields that the largest-magnitude

eigenvalue A is close to – 8 and the smallest-magnitude one is also

negative and close to zero. Thus all the eigenvalues A are distributed

between zero and –8, which agrees with Gerschgorin’s theorem [1,

ch. 1]. Physically, these negative eigenvalues correspond to resonance

frequencies of the cavity resonator formed by the artificially imposed

metallic boundary.

The introduction of a dielectric waveguide will modify some of the

diagonal elements of matrix A. At practical values of frequency V

the modification is just slight, since the quantity (T I“A/b ) 2 is much

less than unity, unless at very large t’. Accordingly. the eigenvahres

are expected to be modified slightly. Some positive eigenvalues ,\

will emerge, which. when divided by the small quantity ( rV-A/b )C,

become the normalized propagation constants B of guided modes.

Since the constant B is less than unity, these positive eigenvalues A

are much less than umty. An actual calculation shows that the largest-

magnitude eigenvalue J is still close to – 8. which is much larger in

magnitude than the eigenvahres A corresponding to guided modes.

This is why the ordinary power method yields spurious eigenvalues

and hence can not be used to find the eigenvalues A corresponding to

guided modes. On knowing the origin of these spurious eigenvalues,

the trouble can be removed by using the shifted power method, as

discussed in the following section.
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IV. SHIFTED POWER METHOD

In the shifted power method the eigenvalue problem (9) is modified

as:

(A+ S~)Z = (} + S)Z.

=(x (lo)

where 1 is the unit matrix and s is a suitable constant. If ~ is

an eigenvalue of matrix A,< is an eigenvalue of matrix (A + sI)
with the same eigenvector. The key point of the proposed procedure

is that let s be, say, 8, then the largest-magnitude eigenvalues (

will correspond to the propagation constants of dominant modes.
Since matrix (A+ sI) is still symmetric, the eigenvahres of largest

magnitude and the associated eigenfunctions can be found using the

block power method (or called treppen iteration) or the method of lop-

sided iteration [1, ch. 10], which are variations of the power method

employing simultaneous iteration and orthogonalization.

The proposed procedure is efficient, since the major computation

is just the multiplications of matrix (A + sI) with various vectors x

or, actually, the algebraic operations:

4’,+1,, + dJ-l,J+ $L,.1+1 + ?J’L,,-l

+ [( XT’LW)2PL, – ~ + S]LLJ.

It is important to note that both the total numbers of required

algebraic operations and memory space are linearly proportional to

N( =m I x mz). the total number of unknowns. A similar method

has been used to calculate dominant resonant modes in cavities [7].

V. CONVERGENCE RATE

The convergence rate is determined by the starting vectors and how

fast the term (Cq+l /<P) goes to zero [1, ch. 101, where <, denotes

the ith eigenvalue, p is the number of modes interested, q is the

number of vectors employed in the simultaneous iteration, and n is

the number of iterations. A major drawback of the proposed method

is that the convergence rate is slow. This is because that the ratio

(*+1 /(, may be quite close to unity. The reason is twofold. First,

since the number of eigenvalues of matrix A is equal to the number

of unknowns, which can be as large as several hundred or more, so

the eigenvalues < are closely packed. Secondly, if the eigenvalues

are shifted by an amount s which is much greater than }P and }q+l.

then the ratio will be close to unity, as shown by the relation:

(,+1/(, ~ 1 – (}P – h+l)/s. (11)

The second effect can be remedied somewhat by choosing a constant

s less than 8. It is seen that a constant s is suitable so long as it is

greater than one half of the absolute value of the largest-magnitude

eigenvalue X, which is close to 4. The first effect is discussed in

detail in the following paragraph.

Since the eigenvalue A = ( ~L”A/b)2 B, the ratio depends on

the frequency T’ and the increment A. For a given waveguide

structure a smaller A increases the accuracy, but increases the

computation twofold. First, a smaller A increases the total number of

unknowns and hence that of algebraic operations for each iteration.

Secondly, a smaller A decreases the magnitudes of eignevalues 1

corresponding to dominant modes and thus slows the convergence

rate. To calculate the propagation constant of the fundamental mode

near cutoff (at a very low value of 1“ ) may have some difficulty,

since the corresponding modal fields penetrate very deeply into the

cladding and hence one should sufficiently extend the domain of

calculation. Furthermore, like a smaller A, a lower 1” also decreases

the magnitudes of eigenvalue A and hence slows the convergence rate.

Fortunately, since the corresponding field variation becomes small at

1.81 f

B

v.
Fig. 2. Dispersion curves of the first four scalar modes m a step-index fiber.

The normalized frequency used here N given as 10 = k. a{=, where
a M the fiber’s radius.

B

v
Fig. 3. Dispersion curves of the first two modes of two coupled identical

square waveguides.

a lower V. the vahre of A can be increased to reduce the number

of unknowns and accelerates the convergence rate in compensation.

In constructing the $-w (13-1’”) dispersion curves, where the value

of V is varied step by step, the convergence rate can be improved,

if we use the eigenfunctions calculated at the previous value of V

as the starting vectors.

VI. NUMERICAL RESULTS

In this section we present the calculated results for a circular

step-index fiber and coupled rectangular waveguides. The simple

staircase approximation is used to model the cross sections of all

the waveguides.

We use a 20 x 20 rectangular grid to model the cross section of a

circular step-index fiber (A/b = 1/20). except for the LPo1 mode

at Tio <4. (The normalized frequency used for circular fiber is given

conventionally as W = kO a {’ where a is the fiber’s radius.)

While, 10 x 10 and 6 x 6 grids are used to handle the LPo1 mode

at 1 < Pi < 4 and t h = 1, respectively. The numbers of unknowns

are near 1500. The numbers of iteration n to reach convergence at

lower I; are around several hundred (n = 800 at ~0 = 1), and those

at higher t h are around one hundred, when the starting vectors were

chosen randomly and the parameters p and g in (11) are equal. The
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(a) (b)

(c) (d)

(e) m
Fig. 4. Fishnet plots of the field distributions of the first two modes in two
coupled rectangular waveguides separated by a distance b at V = 1.The sizes
of the two cross sections are b x b and c x b. The aspect ratio c/b = 1,0 for
(a) and (b), 1.1 for (c) and (d), and 1.4 for (e) and (f).

calculated results are presented in the squares in Fig. 2. Compared

with the exact solutions (solid lines) it is seen that the accuracy of

the calculation is rather high. This is because that the efficiency of

this method permits us to use a very fine discretization.

The proposed method is also capable of dealing with coupled

waveguides by treating the whole coupled waveguides as a single

waveguide. The dispersion relations of the first two modes of two

coupled square waveguides of side length b and separated by a dis-

tance b are presented in Fig. 3. The corresponding modal fields over

the calculation domain (of size 5b by 3b) at normalized frequency

1’ = 1 are shown in Figs. 4(a) and (b). Since the two waveguides

are identical, one of the modal fields is symmetric and the other is

antisymmetric. Such a symmetry is deteriorated by making the two

waveguides non-identical. To see this, we replace one of the square

waveguides with a rectangular one of cross section c x b. As seen from

Fig. 4, one of two peaks in each field distribution diminishes gradually

when the side length c is increased. This calculation thus supports

that the coupling between two non-identical waveguides is weak, as

predicted in the coupled-mode theory. The numbers of iteration n in

obtaining the results in Fig. 4, where the starting vectors are chosen

randomly, are around 250 (with V = 1, A/b = 0.1, and N N 1500).

VII. CONCLUSION

A numerical procedure using the finite-difference method has been

used to analyze propagation characteristics of dielectric waveguides.

The unique feature of this procedure is that the eigenvalttes and

associated eigenfunctions are solved iteratively using the shifted

power method in which no matrix inversion or the equivalent

is invoked. Both the requirements of memory storage space and

computation time are linearly proportional to iV, the total number

of unknowns. Thus the proposed procedure is quite efficient and the

problem with N as large as a few thousand can be handled on a

personal computer.
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