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In the analysis, the propagation characteristics of the wave are deter-
mined by formulating an eigenvalue problem, where its eigenvalues
are the propagation constants squared and the eigenvectors represent
directly the expansion coefficients of the propagating fields. The
analysis treats the inhomogeneity as a polarization current exciting
the corresponding homogeneous guiding system.

The method is used to solve the problem of electromagnetic
wave propagation in partially-filled parallel-plate waveguide. The
convergence, dispersion characteristics, and accuracy of the method
are studied and compared to the results of the variational method
[6]. The present method proved to have better accuracy than the
variational method [6].
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An Efficient Numerical Procedure Using the
Shifted Power Method for Analyzing Dielectric
Waveguides Without Inverting Matrices

Ching-Chuan Su

Abstract— A numerical procedure using the finite-difference scheme
and the shifted power method is used to analyze the propagation charac-
teristics of dielectric waveguides. The unique feature of this procedure is
that in determining the eigenvalues corresponding to dominant medes no
operation as costly as matrix inversion, such as Gaussian elimination,
LU decomposition, or tridiagonalization, is invoked. So the proposed
procedure is rather efficient in both memory space and computer time.
Numerical results of a circular step-index fiber are presented for compar-
ison. Due to its efficiency, the proposed procedure is capable of analyzing
coupled waveguides.

1. INTRODUCTION

Applying the finite-difference or finite-element method to analyz-
ing the propagation characteristics of dielectric waveguides has been
investigated for a long time and by many people. These numerical
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methods render the partial differential equation governing the propa-
gation characteristics of dielectric waveguides to linear simultaneous
algebraic equations, which are manageable on a computer. In essence
the matrix equation is an eigenvalue problem. Depending on the
mathematical formulation, the properties of boundary conditions, and
the methods of evaluating the eigenvalues, the eigenvalue problem
can be written in several forms, which will be discussed in detail in
Section II.

In waveguide theory the important eigenvalues corresponding to
dominant guided modes in which one is interested are the largest
propagation constants or the lowest frequencies. To calculate these
particular eigenvalues several methods have been employed, such as
the zero-determinant searching, the inverse power method [1, ch. 10],
the subspace iteration method [2] (a variation of the inverse power
method using simultaneous iteration), and the method involving tridi-
agonalization and Sturm sequence [1, chs. 8 and 9]. For evaluating
the determinant of a matrix or for inverting a matrix in using the
inverse power method one needs to use, for example, Gaussian
elimination or LU decomposition. The matrix resulting from applying
the finite-difference or finite-element method to a differential equation
is banded. The bandwidth grows with the dimension of the problem.
For one-, two-, and three-dimensional cases, the value of bandwidth
M are of order unity, O(N*/2), and O(N?/3), respectively, where
N is the matrix order. For a band matrix the number of required
operations for matrix inversion is of order O(M 2 V). The number of
required operations for tridiagonalizing a symmetric matrix is of the
same order as that of matrix inversion. Thus for the two-dimensional
waveguide problem the required computation will go as N2, when
conventional approaches were used.

After analyzing the distribution of eigenvalues of an associated
matrix in Section [I, we show that the direct power method can be
used to calculate the eigenvalues and associated eigenfunctions cor-
responding to dominant modes by suitably shifting the eigenvalues.
The unique feature of this procedure is that no matrix inversion or
tridiagonalization is invoked. Thus the proposed procedure is efficient
in both computation speed and memory space and is simple in the
programming work. A major drawback of the proposed procedure is
the slow convergence rate. Some methods to accelerate this rate will
be discussed in Section V. Numerical results for circular step-index
fiber and coupled rectangular waveguides are presented in Section VI.

II. EIGENVALUE PROBLEMS

Consider a transversely inhomogeneous dielectric waveguide in
which a transverse field ¢ satisfies the scalar wave equation

Viv(z,y) + [koe(x, y) — B (x,y) = 0. )

where k% = w?poco, (., y) denotes relative permittivity distribution,
and [ is the propagation constant in the axial direction. Suppose
that dielectric waveguide is cladded by a homogeneous medium with
relative permittivity €; and the maximum value of the permittivity
e(r, y) is 2. It is of convenience to express the permittivity e(x.y) as

5(1‘7!/)=€1+(€2—€L)P(1'7y)» (2)

where the profile P(z,y) is zero in the cladding and its maximum
value is unity. Using the normalized propagation constant B and
normalized frequency V:

p= (Bk) —a 3)
€2 — €1
V =kobvez — &1/, 4)
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Fig. 1. Cross section of an arbitrarily-shaped waveguide, the domain of
calculation. and the rectangular grid for finite-difference scheme.

the wave equation becomes

Viu(z,y) + (7V/)* Pz, y)y(x,y)
= (7V/b)*By(e,y), (5)

where b denotes the side length of a rectangle enclosing the cross
section of waveguide’s core region. It is known that the value of
normalized propagation constant B ranges from zero to unity and
practical value of normalized frequency V' ranges from zero to a
quantity of order unity.

By a use of the finite-difference technique, the partial differential
equation becomes the linear algebraic simultaneous equations:

{’l,,/‘l+1,] + l/h-l,; + "l’z,]+1 + l['z‘]—l - 41101]}
+ (xVA/B)’ Py,  i=1,2---my
= (@VAL) Py, j=12-ms (6

where ¢, = ©¥(iA,jA), P, = P(iA,jA), and A is a small
increment in length. The increment A should be much less than
the side length b in order to model the waveguide and the modal
fields accurately. The rectangular grid of finite-difference scheme is
depicted in Fig. 1. Since the modal fields penetrate into the cladding,
the domain of calculation is extended out from the core region. On the
boundary of the domain, a boundary condition of vanishing field is
enforced (v, = 0 for i = 0,m1 + 1, or j = 0, m2 + 1). Physically,
such a boundary condition corresponds to shielding the waveguide
with a (two-dimensional) rectangular cavity of metallic walls. In order
to conform to the finite-difference scheme a rectangular domain of
size (m1+1)A by (m2+1)A is used, regardless of the waveguide’s
structure. The extent to which the modal field penetrates into the
cladding depends on several factors, especially the constant B.
Whether the extension of domain is large enough can be monitored
just by checking whether the calculated fields at the node points
neighboring to the boundary are small enough.

To solve the simultaneous equations three approaches are com-
monly used. The first one is to arrange the simultaneous equations
in the form:

Rz =0, %

where z is a vector whose elements are the various field values ¢,
and R is a matrix whose elements depend on the eigenvalue 3 (or
w). The eigenvalue problem can be solved by searching a suitable
value of J (or w) such that the determinant of matrix R vanishes,
as used in [3]. For evaluating the determinant a process as costly as

matrix inversion must be invoked. This approach needs to calculate
many determinants and is less efficient, but is capable of dealing with
sophisticated boundary conditions.

The second approach is to fix the value of B and arrange the si-
multaneous equations in the form of generalized eigenvalue problem:

Sz = \T'z. (8)

where matrix S comes from the first term on the left-hand side of (6),
matrix 7" comes from the other two terms in (6), and the eigenvalue
A = V2. In this form the important eigenvalues 1~ are the smallest
ones, which can be found using the inverse power method or the
subspace iteration method, as used in [4]. This approach also requires
one to invert or, equivalently, factorize the matrix S.

The third approach is to fix the value of 1" and arrange the
simultaneous equations in the form of standard eigenvalue problem:

Az = Az, 9)

where matrix A comes from the two terms on the left-hand side of (6)
and eigenvalue A = {7V A/b)?B. Since the important eigenvalues
B are of the largest ones, it seems that these cigenvalues can be
found quite efficiently by using the ordinary power method and its
variations in which no matrix inversions are involved. However, this
approach does not work. The trouble is that the calculated eigenvalues
do not correspond to guided modes and hence are spurious. Instead,
more expensive methods such as the subspace iteration method [5]
and the methods involving tridiagonalization [6] have been used to
solve standard eigenvalue problems similar to (9).

Thus all the three popular approaches involve a process similar to
matrix inversion with respect to computational cost and hence are
inefficient in both memory space and computer time. The origin of
the just-mentioned spurious eigenvalues can be given after analyzing
the distribution of the eigenvalues of matrix A, as discussed in the
following section.

III. DISTRIBUTION OF EIGENVALUES

For simplicity in the discussion we first remove the waveguide, that
is, put P(z,y) = 0. Note that matrix A is real and symmetric. Thus
all the eigenvalues A of matrix A are real. An actual calculation using
the power method and its variation yields that the largest-magnitude
eigenvalue A is close to —8 and the smallest-magnitude one is also
negative and close to zero. Thus all the eigenvalues A are distributed
between zero and —8, which agrees with Gerschgorin’s theorem [1,
ch. 1]. Physically, these negative eigenvalues correspond to resonance
frequencies of the cavity resonator formed by the artificially imposed
metallic boundary.

The introduction of a dielectric waveguide will modify some of the
diagonal elements of matrix A. At practical values of frequency V'
the modification is just slight, since the quantity (71" A/5)? is much
less than unity, unless at very large V. Accordingly. the eigenvalues
are expected to be modified slightly. Some positive eigenvalues A
will emerge, which, when divided by the small quantity (7V A /b)?,
become the normalized propagation constants B of guided modes.
Since the constant B is less than unity, these positive eigenvalues A
are much less than unity. An actual calculation shows that the largest-
magnitude eigenvalue A is still close to —8. which is much larger in
magnitude than the eigenvalues A corresponding to guided modes.
This is why the ordinary power method yields spurious eigenvalues
and hence can not be used to find the eigenvalues A corresponding to
guided modes. On knowing the origin of these spurious eigenvalues,
the trouble can be removed by using the shifted power method, as
discussed in the following section.
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IV. SHIFTED POWER METHOD

In the shifted power method the eigenvalue problem (9) is modified
as:

(A+ sz = (A + s)z.
:C;L'

where I is the unit matrix and s is a suitable constant. If A is
an eigenvalue of matrix A, ¢ is an eigenvalue of matrix (A + sI)
with the same eigenvector. The key point of the proposed procedure
is that let s be, say. 8. then the largest-magnitude eigenvalues (
will correspond to the propagation constants of dominant modes.
Since matrix (A + sI) is still symmetric, the eigenvalues of largest
magnitude and the associated eigenfunctions can be found using the
block power method (or called treppen iteration) or the method of lop-
sided iteration [1, ch. 10], which are variations of the power method
employing simultaneous iteration and orthogonalization.

The proposed procedure is efficient, since the major computation
is just the multiplications of mairix (A + sI) with various vectors &
or, actually, the algebraic operations:

(10)

ll’z+1,] + wzfl,‘) + ¢‘541+1 + ¢z,]~1
+[(7VA/b)* Py — 4+ ],

It is important to note that both the total numbers of required
algebraic operations and memory space are linearly proportional to
N(=m1 X m2). the total number of unknowns. A similar method
has been used to calculate dominant resonant modes in cavities [7].

V. CONVERGENCE RATE

The convergence rate is determined by the starting vectors and how
fast the term ({g+1/p) goes to zero [1, ch. 10], where ¢, denotes
the ith eigenvalue, p is the number of modes interested, ¢ is the
number of vectors employed in the simultaneous iteration, and n is
the number of iterations. A major drawback of the proposed method
is that the convergence rate is slow. This is because that the ratio
{g+1/(p may be quite close to unity. The reason is twofold. First,
since the number of eigenvalues of matrix A is equal to the number
of unknowns, which can be as large as several hundred or more, so
the eigenvalues ¢ are closely packed. Secondly, if the eigenvalues
are shifted by an amount s which is much greater than A, and Agy1.
then the ratio will be close to unity, as shown by the relation:

Cor1/Co =1 — (Ap — Agr1)/s. (11

The second effect can be remedied somewhat by choosing a constant
s less than 8. It is seen that a constant s is suitable so long as it is
greater than one half of the absolute value of the largest-magnitude
eigenvalue A, which is close to 4. The first effect is discussed in
detail in the following paragraph.

Since the eigenvalue A = (rV'A/b)’B, the ratio depends on
the frequency V' and the increment A. For a given waveguide
structure a smaller A increases the accuracy, but increases the
computation twofold. First, a smaller A increases the total number of
unknowns and hence that of algebraic operations for each iteration.
Secondly, a smaller A decreases the magnitudes of eignevalues A
corresponding to dominant modes and thus slows the convergence
rate. To calculate the propagation constant of the fundamental mode
near cutoff (at a very low value of V) may have some difficulty,
since the corresponding modal fields penetrate very deeply into the
cladding and hence one should sufficiently extend the domain of
calculation. Furthermore, like a smaller A, a lower V7 also decreases
the magnitudes of eigenvalue A and hence slows the convergence rate.
Fortunately, since the corresponding field variation becomes small at

1.0

Fig. 2. Dispersion curves of the first four scalar modes 1n a step-index fiber.
The normalized frequency used here 1s given as Vo = koa+/€2 — €1, where
a 1s the fiber’s radius.
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Fig. 3. Dispersion curves of the first two modes of two coupled identical
square waveguides.

a lower V. the value of A can be increased to reduce the number
of unknowns and accelerates the convergence rate in compensation.
In constructing the 8-w (B-V) dispersion curves, where the value
of V is varied step by step, the convergence rate can be improved,
if we use the eigenfunctions calculated at the previous value of V
as the starting vectors.

VI. NUMERICAL RESULTS

In this section we present the calculated results for a circular
step-index fiber and coupled rectangular waveguides. The simple
staircase approximation is used to model the cross sections of all
the waveguides.

We use a 20 x 20 rectangular grid to model the cross section of a
circular step-index fiber (A/b = 1/20). except for the LPo1 mode
at Vo < 4. (The normalized frequency used for circular fiber is given
conventionally as Vo = koa+/€z — €1, where a is the fiber’s radius.)
While, 10 x 10 and 6 x 6 grids are used to handle the LPo; mode
at 1 < ¥y < 4 and V5 = 1, respectively. The numbers of unknowns
are near 1500. The numbers of iteration n to reach convergence at
lower V; are around several hundred (n = 800 at Vy = 1), and those
at higher 15 are around one hundred, when the starting vectors were
chosen randomly and the parameters p and ¢ in (11) are equal. The
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Fig. 4. Fishnet plots of the field distributions of the first two modes in two
coupled rectangular waveguides separated by a distance b at V' = 1. The sizes
of the two cross sections are b X b and ¢ x b. The aspect ratio ¢/b = 1.0 for
(a) and (b), 1.1 for (c) and (d), and 1.4 for (e) and (f).

calculated results are presented in the squares in Fig. 2. Compared
with the exact solutions (solid lines) it is seen that the accuracy of
the calculation is rather high. This is because that the efficiency of
this method permits us to use a very fine discretization.

The proposed method is also capable of dealing with coupled
waveguides by treating the whole coupled waveguides as a single
waveguide. The dispersion relations of the first two modes of two
coupled square waveguides of side length b and separated by a dis-
tance b are presented in Fig. 3. The corresponding modal fields over
the calculation domain (of size 5b by 3b) at normalized frequency
V' = 1 are shown in Figs. 4(a) and (b). Since the two waveguides

are identical, one of the modal fields is symmetric and the other is
antisymmetric. Such a symmetry is deteriorated by making the two
waveguides non-identical. To see this, we replace one of the square
waveguides with a rectangular one of cross section ¢ xb. As seen from
Fig. 4, one of two peaks in each field distribution diminishes gradually
when the side length c is increased. This calculation thus supports
that the coupling between two non-identical waveguides is weak, as
predicted in the coupled-mode theory. The numbers of iteration n in
obtaining the results in Fig. 4, where the starting vectors are chosen
randomly, are around 250 (with V' = 1,A/b = 0.1, and N ~ 1500).

VII. CONCLUSION

A numerical procedure using the finite-difference method has been
used to analyze propagation characteristics of dielectric waveguides.
The unique feature of this procedure is that the eigenvalues and
associated eigenfunctions are solved iteratively using the shifted
power method in which no matrix inversion or the equivalent
is invoked. Both the requirements of memory storage space and
computation time are linearly proportional to NN, the total number
of unknowns. Thus the proposed procedure is quite efficient and the
problem with NV as large as a few thousand can be handled on a
personal computer.
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